Removing the Biofuel Confusion

I cannot recall a time when there has been so much consternation and confusion among fuel site operators as has been caused by the introduction of a percentage of biofuels.

Unfortunately, there is no shortage of advice, but much of it is contradictory, biased and over-technical. So I have tried to cut through this with what I believe is a free, straightforward, easy to understand 10-point advice sheet, that can be obtained from the web site below.

There is now the added problem that the industry could have invested in equipment to gear up to deal with a problem that may possibly, if some environmentalists get their way, not continue; at the moment, this is as categorical as anyone can be.

One of the main proponents of biofuels has been the US Government. For America, biofuels had the dual advantage of increasing its flagging environmental credentials in the world, while tackling some of the problems with its rural economy and reducing its dependence on Middle East oil.

However, many in the environmental lobby have pointed out that the farming and production of biofuels actually creates more CO2 than oil derived fuels and that its cultivation has resulted in a huge increase in world food prices, due to land formerly used for food production being transferred to biofuel crops.

Now the US Environmental Protection Agency (EPA) has approved E15 (petrol with 15% bio-ethanol) for cars made in 2007 and after, but has delayed a decision on allowing it for use in 2001 to 2006 models. This decision is being legally challenged by the American Petroleum Institute and various food industry groups. Without the US, global momentum for biofuels could slow down. This cooling in enthusiasm is also beginning to show on this side of the Atlantic. The Guardian has reported that UK ministers have said that Britain’s policy of supporting the EU commitment to biofuels is proving counter-productive and the greenhouse emissions associated with biofuels are substantially greater than the savings.

They are now urging the European Commission to rethink the plan.

The admission coincides with a major study published recently, which concludes that biofuels will create an extra 56 million tonnes of CO2 per year – the equivalent of 12 to 26 million cars on Europe’s roads by 2020.

Also, for Europe to source the amount of biofuel needed within its own borders, it would need to cultivate an area somewhere between the size of Belgium and the Republic of Ireland.

Added to this is the problem that a small proportion of bio-diesel is made from animal fat, a fact that the growing number of vegetarians in the population has not yet realised. This is likely to cause something of a back-lash when they do wake up to it. At the moment, there is no way for retailers to know whether all or part of their bio-diesel delivery has come from an animal source, so they are unable to offer a vegetarian alternative.

All this means that we could be faced with a complete reversal of policy, stuck at the current 5% level, or it might be decided to press on eventually to 15-20%, with the probable need to have more than one blend available on the forecourt. Or one of the current research projects involving different methods of biofuel production may bear fruit.

The only certainty is uncertainty.

This means that we are faced with the situation that there is an undoubted current problem with which fuel site operators have to deal, but there is a disincentive for companies to invest in research and equipment to tackle the problem more efficiently.

For this reason, I have kept my approach as straightforward as possible, approaching it step by step, so fuel site operators can understand it as well as research chemists.

The first thing I have done is set out the three main symptoms that operators and maintenance companies are likely to spot: pumps running slowly, filters continually clogging, pump motors burning out and, worst of all, customers’ vehicles breaking down.

The most likely cause is the fact that biofuels are extremely good cleaning agents. All tanks, except brand new ones, will have a build-up of sludge in the bottom of the tank and rust and other contaminants around the walls and in the pipes. Biofuels will pick up dirt and particulates and deliver them to the pumps.

The other two causes are biological: bacteria and algae.

Algae forms a dark green to black slime when collected by filters out of suspension and bacteria form gelatinous clumps, which resemble jellyfish when viewed in the tank; these can be up to a foot across.

Both organisms need water, food and a conducive environment in which to thrive. Biofuels provide the food and, because of their propensity to absorb water, they can also provide the hydration. Bio-diesel is more susceptible than the ethanol in petrol, as ethanol is a mild bactericide.

If it is a simple sludge problem and the tanks are not too old, changing the filters a few times, until the sludge has passed through the system, may cure the problem and be the cheapest option.

I also recommend the regular testing of fuel by a specialist company, whether there is an apparent problem or not. Sometimes problems are not obvious by eye alone. A test will show just what problems there are and their extent. It will also establish a base line against which to judge the effectiveness of any remedial work that may have to be carried out.

As well as testing for particles and bio-contamination it is worth testing the specific gravity of the fuel. Normally, water in the fuel is reasonably obvious, but biofuel absorbs water and masks the problem. Often, the only indication is a change in the density of the fuel. Water in the fuel helps the growth of bacteria and algae.

There is also the question of where the water is coming from. The biofuel could be masking another problem – a topic I will return to later.

If these first steps lead to the conclusion that there is a sufficient problem, then, and only then, would I recommend tank cleaning.

All the advice from the USA and Australia, where they have had biofuels longer than we have, is that it is vital to have a clean tank when dealing with biofuel.

Our experience has shown that removing the fuel and thoroughly cleaning all sediment from the tank will cure a clogging problem caused by sediment. It will also remove bacterial colonies and algae clinging to the inside of the tank or in the residual sludge.

From reading the trade press, I noted with interest that other companies are beginning to support the line I have consistently taken for some time, that the only way is to thoroughly clean a tank. This is especially true if the aim is to end up with a thoroughly dry tank.

There has been pressure from some quarters towards remote cleaning from the outside. This, of course, uses a great deal of water, which has to be disposed of as contaminated, and makes it difficult to get a dry enough tank to deal with biofuel problems. I also firmly believe that tank entry is perfectly safe if the proper procedures are adhered to and operatives are correctly trained.

Also, while the tank is empty and clean, it can be checked for leaks and thinning, both by eye and by ultrasound probe.

This is also a good opportunity to get the tank lined, which can reinvigorate a corroded or leaking tank, provide leak detection and help keep the tank clean. There is, of course, also the value of contaminated stock to consider. If the volume of fuel and contamination is such that it cannot be sold through, or its safe disposal would represent too much of a financial loss, it is worth considering fuel polishing. This is where contaminated fuel is sucked out of the tank and put through a series of filters to clean it. For optimum results, I recommend the processed fuel should then be delivered to a cleaned tank. If the contamination is heavy, the fuel may have to go through the filters more than once.

Fuel polishing and tank cleaning go together, as there is little point in returning polished fuel to a contaminated tank, or contaminated fuel to a clean tank.

Once a fuel site operator has clean fuel in a clean tank, we recommend keeping it that way. As each new tanker load can bring in fresh biological contamination and, possibly, water, we believe it is prudent to schedule regular fuel analysis. This may lead to further polishing and cleaning, but taking action early will reduce subsequent costs and disruption.

Finally, I recommend regular tank cleaning. The best way to head off future problems is to schedule a programme of cleaning dependent on site conditions. Again, scheduled maintenance is always going to be cheaper and less disruptive than emergency remedial action.

Nigel Plumb, director DP Fuel Tank Services

Article Source:
http://EzineArticles.com/?expert=Nigel_Plumb

Advantages and Disadvantages of Biofuels – The Energy Source of Our Future

With all of the talk about our dependency on foreign oil and its economic and environmental costs people are very hungry a cheaper alternative that is also good for our atmosphere and biofuels could be that next energy source. We should however analyze the advantages and disadvantages of using biofuel to replace gasoline as the dominant fuel source not just in our country but globally.

Advantages of biofuel

1. It is a very green friendly fuel that can help to halt and even in some cases reverse our current rising levels of green house gas that oil has had a major contributing factor in.

2. It can be made from many sources such as plant material, fungi and algae and since these source are available in abundance and can potentially reproduced on a massive scale they are an energy source that is potentially unlimited.

3. It will end our need to depend on opec and other foreign countries for our energy needs and can potentially help to bring world peace.

4. Biofuels can also help to stimulate jobs locally and can thus have the potential to turn around a global economy that has been slumping for a while now. They are also much safer to handle than gasoline and therefore cause lesser long term health effects on the human body.

As you can see these are all very good advantages in favor of this awesome new fuel source but just like all others, there are also some negative factors involved here.

Disadvantages of biofuel

1. As of right now even though biofuels produce much lesser green house gases the machines that are used to cultivate and produce them still have some problems with carbon emissions so we still need to work on newer ways to produce them in a more greener way.

2. Our technological process to produce biofuels are way to costly for us to be able to afford on a massive scale. We still need billions of dollars of research money into having a manufacturing process that will produce them at a cheaper rate.

3. We still don’t have anywhere near the amount of biofuel converted cars to be able to take advantage of this fuel source. We will need to invest trillions of dollars to change the automobile infrastructure to allow us to take advantage of this awesome natural fuel.

4. Once we are able to build large manufacturing plants we will need to find a way to deal with the very bad smell that is the outcome of the biofuel production cycle and large towns will not want to put up with this bad odor produced.

While there are some disadvantages to biofuel the potential is just to great to ignore and push forward with. This is the energy source of the future so the sooner we can get it to the manufacturing process and made available to the masses the faster we will be able to solve the problems we are now facing with gasoline only lasting another 20 to 30 years.

Author loves writing about new alternative energy sources such as Biofuel. To get the latest information visit http://www.biofuelguide.net to get up to date on the latest biofuel research and information.

Article Source:
http://EzineArticles.com/?expert=Bob_Randooke

Biofuels: Biotechnology, Chemistry, and Sustainable Development

Bio Fuels Facts

Evaluating a wealth of quantitative data, Biofuels: Biotechnology, Chemistry, and Sustainable Development discusses different types of biofuels, the science behind their production, the economics of their introduction to the marketplace, their environmental impacts, and their implications for world agriculture. It broadens the discussion on biofuels beyond bioethanol and biodiesel, taking into account the data, ideas, and bioproducts that have appeared over the last fifty years.

An Insider’s Look at the Biotech Industry

Written by a seasoned expert in the biotech industry, the book analyzes in detail the present status and future prospects of biofuels, from ethanol and biodiesel to biotechnological routes to biohydrogen. It emphasizes the ways biotechnology can improve process economics as well as facilitate sustainable agroindustries and crucial elements of a biobased economy. The author also explores the additional innovations required in microbial and plant biotechnology, metabolic engineering, bioreactor design, and the genetic manipulation of novel biomass species of plants, such as softwoods and algae.

The Role of Biofuels in the Future

With over 1,000 references and nearly 200 graphs and tables of data, this well-researched, comprehensive work examines the past and present of various biofuels while considering the future of a biocommodity economy.

List Price: $ 129.95

Price: [wpramaprice asin=”1420051245″]

What is Cellulosic Biofuel?

Lately researchers are looking for every possible alternative energy source, this due largely to the world’s energy crisis and the condition of the environment. The top of the list is replacing traditional fossil fuels with alternative and renewable energy.

The main contenders for fuel substitutes are biomass fuels. Biomass fuels are derived from organic plant matter. Ethanol-based bio fuels are extracted from corn. Biodiesel is made up primarily of used vegetable oil and grease. Jatropha oil, which comes from seeds from the Jatropha plant, is also being used to make biofuels. Now added to the list is cellulosic biofuel.

Cellulosic biofuel is very revolutionary in biofuels; this is because it is not plant specific as with Jatropha and and can be generated from both living and dead organic plant matter rather than requiring crops to be grown specifically for the purpose of cellulosic biofuel production, such as ethanol needs corn.

The carbon content in cellulose is what makes it such a good candidate in the quest for biofuel. Cellulose is the most abundant carbon form present in biomass and accounts for around 50% of its weight. Cellulose can be found in most plant matter without the need for land space or water for irrigation giving cellulose biofuel its appeal.

Cellulose is a polysaccharide comprised of a six sugar carbon polymer. Because of its composition and its abundance, cellulosic biofuel is an attractive possibility for mass biofuel production.

The researchers at NASA are further exploring cellulosic biofuel as a viable fuel source. They are researching more efficient processes to convert cellulose to sugar. Once cellulose is converted to its sugar-based form it can be used for other purposes such as chemical agents, food and cellulosic biofuel.

However, the conversion to sugar is requires around 50 hours for the process to take place. You take labor costs and the energy to covert it, and you can see how costly it can become. With time also comes higher production costs. If it would be pssible to cut this process down to 5 hours it would see cellulosic biofuel become cost effective enough to be competitive in a global market.

What scientists hope to accomplish is to refine the process for easier extraction of the complex sugars from cellulose. Because the plant cell walls were designed in nature to be robust and to stand up to the elements, it makes it difficult to break down and extract. Researchers hope to make extraction easier by engineering plant cell walls.

Another hurdle in the production of cellulosic biofuel involves the improvement in enzyme efficiency. They plan to mimic enzyme behavior from animals that are the most efficient at breaking down cell walls such as herbivores like cows and sheep which they believe is the key to cost effective cellulosic biofuel production.

Some of the things we can do to help protect ourselves from increasing oil prices is to conserve what we have now, to use less, and to alter our energy consuming patterns. We need to look into alternative energy sources when they become available to us. If we do these things, cellulosic biofuel could be on the market in as little as 5 years.

Want to get more information on biofuels and renewable energies?
http://www.renewable-energyadvantages.com

Paul Hundrieser
http://www.paulhundrieser.com

Article Source:
http://EzineArticles.com/?expert=Paul_Hundrieser